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Abstract--Distortions of a homogeneous fabric, which occur around rigid objects in rocks deformed by 
non-coaxial ductile flow are useful to determine the sense of shear, but also contain information on other aspects 
of the flow. Rigid objects in a non-coaxial flow fall into two categories: those which are permanently rotating and 
those which can reach stable positions at high finite strain. The orientation of such immobilized objects with 
respect to eigenvectors of instantaneous flow is a function of the vorticity number of the flow, the ratio of 
instantaneous stretches and the axial ratio of the object. In naturally deformed rocks, immobilized rigid objects 
may be recognized from the geometry of the surrounding fabric. Tails of recrystallized material around 
porphyroclasts in a mylonite rotate towards parallellism with the extensional eigenvector of the flow, and the 
shape of tails reflects the rotational hehaviour of the porphyroclast. The axial ratio of immobilized porphyroclasts 
and their orientation with respect to the tails can theoretically be used to determine the vorticity number of the 
flow and deviations from isochoric plane strain. In practice such an analysis is as yet difficult, but a tentative 
example is given of the way in which the vorticity number can be calculated from a population of feldspar 
porphyroclasts in a quartzite mylonite from the French Pyrenees. 

INTRODUCTION FLOW DESCRIPTION 

RIGID OBJECTS in rocks undergoing penetrative ductile 
non-coaxial flow will tend to rotate with respect to the 
kinematic frame of the bulk flow, and disturb the 
developing foliation pattern in a small adjacent domain. 
This disturbed pattern can be used to determine sense of 
vorticity of bulk flow in the rock (Simpson & Schmid 
1983, Passchier & Simpson 1986). The rotational 
behaviour of rigid objects in a homogeneously deform- 
ing matrix is rather complex, but analytical solutions of 
the governing equations are known for axially symmetric 
objects in progressive pure or simple shear (Jeffery 
1922, Bretherton 1962, Freeman 1985). Ghosh & Ram- 
berg (1976) have shown that, even in non-coaxial flows, 
rigid objects of specific axial ratio will follow asymptotic 
movement patterns and can become stationary at high 
strain. If objects which have reached such stable posi- 
tions can be recognized in naturally deformed rocks, 
their shape and orientation can provide a whole new 
category of information on the character and orientation 
of the flow pattern around them, notably on the vorticity 
number and the deviation from plane strain, including 
volume change. 

This paper expands the work of Ghosh & Ramberg 
(1976) into a three-dimensional analysis of the nature 
and orientation of asymptotes for rotation of axially 
symmetric objects in general homogeneous steady flows, 
and indicates some differences between the solutions for 
axially and non-axially symmetric objects. Finally, I 
show how a population of rigid objects in a naturally 
deformed high-strain rock can give information on the 
orientation of asymptotes and, indirectly, on sense of 
shear and the kinematic vorticity number of the flow. 

In a body deforming by homogeneous isochoric plane- 
strain flow, the rate of displacement (X~) of particles at 
X~ in a fixed Cartesian co-ordinate system can be 
described by the velocity gradient tensor L' (Malvern 
1969, p. 139) as: 

"[ ],/ 0 0  0 1 
0 ~- • X - ~ ,  (1) 

[x;j o s - w  o [x;] 
2 

where W is the vorticity of the flow and $ is a scalar 
defining the stretching rate of the flow (Means et al. 
1980). L' can be expressed as the sum of a symmetric 
tensor D' and an antisymmetric tensor W': 
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The eigenvectors di of D' are the orthogonal instantane- 
ous stretching axes of the flow and the eigenvalues dr, d2 
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Fig. 1. Schematic representation of a homogeneous plane-strain non- 
coaxial flow with vorticity number Wk = 0.76 described by a tensor L'. 
X~--co-ordinate system, d,---eigenvectors olD' ,  instantaneous stretch- 
ing axes./,-----eigenvectors ofL', flow apophyses. Ornamented surfaces 
are traced by material lines parallel to X{. Arrow around X~ indicates 

sense of shear. 

and d3 are instantaneous stretching rates with values 0, 
S/2 and -S /2 .  The vorticity vector of the flow is parallel 
to dl (Fig. 1). 

Eigenvectors li of L' do not usually coincide with those 
of D', except for pure shear. In other cases  ! 1 is parallel 
to dl, and/2 and/3 lie in the X~ - X~ plane symmetrically 
arranged with respect to de and d3 (Fig. 1) (Bobyarchick 
1986, Passchier 1986). The instantaneous non-coaxiality 
of the flow can be expressed by a vorticity number: 

W 
Wk - Id2 - dal" (3) 

which for isochoric plane-strain flow equals the kine- 
matic vorticity number of Truesdell (1954): 

W 
W = (4) 

V'2(dl 2 + d ~ +  d 2) 

For pure shear Wk = 0, for simple shear W k = 1. 
The planar surfaces through !1,/2 and It,/3, defined as 

eigenvector planes (Passchier 1986) have special proper- 
ties for all types of instantaneous steady flow and for 
progressive steady flows following integration of L'. For 
Wk ~< 1 all particle paths in the flow defined by L' follow 
hyperboloid curves (Fig. 1) which approach the eigen- 
vector planes asymptotically; particles within the eigen- 
vector planes approach or depart from the X~ axis along 
paths within the planes. For these reasons, eigenvectors 
/2 and 13 have been named flow apophyses by Ramberg 
(1975a, b). For plane-strain flow, particle paths within 
the eigenvector planes are the only straight orbits in the 
flow (Fig. 1). 

MOVEMENT OF AXIALLY-SYMMETRIC RIGID 
OBJECTS 

General theory--isochoric plane-strain f low 

Governing equations of the movement of rigid objects 
in homogeneous flow (Jeffery 1922, Bretherton 1962, 
Gierszewski & Chaffey 1977, Hinch & Leal 1979, 
Freeman 1985) are least complex for axially symmetric 
ellipsoidal objects. The axial ratio of such objects can be 
expressed by a component B of the Bretherton shape 
tensor (Bretherton 1962), where a is the length along the 
symmetry axis and b the radius in the circular section 
(Fig. 2): 

a; -- b 2 
B = a2 + b - - - - - -  ~ .  (5)  

Thus B can represent a material line (B = 1), a prolate 
ellipsoid (0 < B < 1), a sphere (B = 0), an oblate ellip- 
soid ( - 1  < B < 0) or a material plane (B = -1) .  If an 
internal reference frame X~ is chosen with X 1 fixed to the 
object symmetry axis (OSA), the rotation of the object 
with respect to the external reference frame X~ is given 
by the Eulerian angles 0, ~ and ~p, described by a 
rotation tensor R (Ooldstein 1980, p. 147). However, 
the orientation of an axially symmetric object can be 
defined by two angles only: in this paper 0 = 90 ° which 
reduces ~ to the azimuth and ~ to the plunge of the OSA 
(Fig. 2a). D' and W' can now be expressed in terms of the 
internal reference frame by: 

O = RD'R T (6) 
and 

W = R W ' R  r (7) 

x; 
(a) . . . .  

X~-X -"~: " 
- "~ 17',.O 2 " ~ l -  "- - 

(b) /xl .... 9~- 

" PROJECTION \\, / STEREOORAPHIC / \ 

\ • ~ t a ~ O S A  / 

Fig. 2(a). Reference frame for rotation of axially symmetric rigid 
ellipsoids. X~ and X,--external and internal co-ordinate systems. 
and ~---azimuth and plunge of object symmetry.ax!s (OSA). ~0r--angu- 
lar velocity components of OSA around X,. 0, 0,  ~0--rate of change of 
Eulerian angles, v---instantaneous displacement rate of OSA on a 
sphere around centre of co-ordinate systems. (b) Stereographic projec- 

tion of OSA and v. 
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The instantaneous angular velocities of the object 
around the Xi axes are now (Freeman 1985): 

s w k  
(.01 = --  W32 = ~ c o s  • c o s  ~), 

B S -  WkS  
( ' 02  = - -  W 1 3  - BD32 - 2 cos $ sin ~p, (8) 

S 
0)3 = - -  W21 + 8021 = ~ sin q~ (Wk + B cos 2 ~p). 

Here Wl describes the axial rotational velocity of the 
object around its symmetry axis, zero if the OSA lies in 
the X~ - X6 plane and a maximum if it lies parallel to XI; 
0) 2 and 0)3 describe the angular velocity of the OSA with 
respect to Xi and can be recalculated in terms of 0, ~ and 
~, the rates of change of Eulerian angles in the external 
reference frame X:: 

0 = - -  0)2 sin ~, 

= 0)2 cos ~O, (9) 

~ = 0)3" 

In order to understand how Wk, B, ~, ~p and S influence 
the movement pattern of objects, the instantaneous 
displacement rate of the OSA along a sphere around the 
centre of the co-ordinate systems was calculated from 
equations (8) for a number of OSA positions and plotted 
as a vector v in stereograms (Figs. 2 and 3). S appears as 
a constant in all equations (8) and its magnitude does not 
influence the shape of the flow patterns: in the calcula- 
tions a value S = 10 was used. A half stereogram is 
sufficient for presentation of the movement pattern 
because of its bilateral symmetry. 

The vectors in Fig. 3 describe the instantaneous move- 
ment of the OSA, but the vector field traces a regular 
pattern which defines potential finite trajectories of the 
OSA in steady flows, as obtained by numerical integra- 
tion of equations (9) (e.g. Freeman 1985). OSA-trajec- 
tories for S = 10 have been constructed from stereo- 
grams (as in Fig. 3) for a complete range of B and Wk 
values (Fig. 4). It is clear that both B and Wk have a 
profound influence on the shape of the OSA trajectories. 
All patterns have complete bilateral symmetry on the 
X~ - X; plane and two extra mirror planes for the shape 
of OSA trajectories only. Some of the patterns contain 
'stable positions' at which an OSA would remain 
immobile during progressive deformation provided that 
B, Wk and the orientation of the kinematic frame of flow 
do not change. These stable positions fall into three 
categories: sources at which the OSA are in metastable 
equilibrium; sinks at which the OSA are in stable equilib- 
rium; transient positions where small deviations from 
these points can cause a return of the OSA or a perma- 
nent removal depending on the direction in which the 
deviation operates. Outside the stable positions the 
OSA accelerate and decelerate along simple paths either 
to reach a sink or transient stable position, or to rotate 
permanently along the same orbit (Jeffery 1922, 
Bretherton 1962, Hinch & Leal 1979). The patterns can 

X I 
3 

Fig. 3. Computer-generated upper hemisphere Wullf projection of 
displacement rate vectors of OSA at 343 positions. 10" intervals of ~ 

and 5 ° intervals of ~0. INk = 0.4, B = 1.0. 

be subdivided according to B and W k values as follows 
(Fig. 4). 

(a) Wk < IBI. Three stable positions exist in the dia- 
grams: a transient position parallel to Xi and a source- 
sink pair in the X~ - X; plane. Source and sink are 
always symmetrically arranged with respect to di, and 
their actual positions depend on the sense of vorticity, B 
and Wk. At Wk = 0 (pure shear) source and sink coincide 
with eigenvectors of D' and L' at 45 ° to X~ and X~ (Fig. 
4). For any Wk, material lines (B = 1) follow a trajectory 
towards a sink parallel to/2, and the normal to material 
planes (B = -1)  approaches a sink normal to 12. The 
OSA of objects with other B-values have a source and 
sink at an angle _+ t5/2 from X~ (Fig. 4) defined by: 

cos fl - Wk (10) 
B 

(b) Wk = IBI. A 'stable plane' exists through X~ and 
X; (B > 0) or X~ (B < 0). All OSA within this plane are 
in transient equilibrium. Outside the stable plane OSA 
rotate along straight planar paths towards X~ or X~. If 
Wk = 1, the stable plane coincides with the neutral or 
shearing plane of simple shear flow. 

(c) Wk > IBI. Only a transient position exists along 
XI. In all other positions the OSA rotate continuously 
along closed Jeffery orbits (Jeffery 1922, Freeman 1985). 
The same effect occurs if B = 1 or -1 ,  but Wk > 1: in 
other words, if the flow contains a component of rigid 
body rotation in the external reference frame (Ramberg 
1975b, Means et al. 1980). 

General flow 

For non-isochoric non-plane strain, the rotational 
behaviour of axially symmetric objects is more complex 
than that outlined above. The components of L' are now: 

L, = 

d 1 0 

0 d2 + d3 
2 

0 d 2 - d 3 - W  
2 

0 

d2 - d3 + W 
2 (11) 

d2 + d3 
2 

SG 9 :5 /6 -J  
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Fig. 4. Movement patterns of the object symmetry axis (OSA) for the range of possible W k and B values. Upper hemisphere 
Wulff projection. Representative flow types shown along the top, representative object shapes on the left. Symbols in 
stereograms: open circles----sources of OSA; open squares--sinks of OSA; solid circles---transient stationary positions of 
OSA; bold lines at W k = IBl--planes of transient stable positions, d,--eigenvectors o f  D '  (instantaneous stretching axes). 

/;--eigenvectors of L ' .  

This tensor  descr ipt ion can be used to obtain  the follow- 
ing equat ions  for angular  velocities a round  the O S A  in 
the same  way as descr ibed above:  

W 
~ ,  = = c o s  ¢ c o s  V,, 

Z 

cos ~0 {W sin ~p + B ( 2 d t  - d ,  - d3) cos tp 
(1)2 - -  2 

× sin q~ - B(d2 - d3) sin ~p}, (12) 

I {W s i n ¢  - B ( 2 d l  - d 2 - d ; )  sin q~ cos 
093 = 2 X cos = ¢ + B ( d  2 d3) si cos 2 q)}. 

The  condi t ions at which the O S A  is s ta t ionary  in general  
flow types can be found  by solving equat ions  (12) for  
~o2 = ~o3 = 0. E l imina t ion  of ¢ and ~p gives: 

B2 - W2 (13) 
V 2 -  B-- - . - - - f~  ' 

where  V is defined as: 

V = 2dl - d2 - d3 (14) 
d2 - d~ 

It can easily be shown f rom equat ions  (12) that  equat ion 
(10) is valid for  genera l  flow types as descr ibed above  
and thus follows f rom equat ion  (13): 

V = sin ft. (15) 

M o v e m e n t  pa t te rns  of  the O S A  in general  flow types,  as 
defined by equat ions  (11) and (12), can be g rouped  into 
specific fields in B - Wk - V space,  whose boundar ies  
are defined by equat ions  (13) and (15). The  pa t te rns  
have  the following proper t ies  (Fig. 5; only posit ive B 
values descr ibed,  for simplicity).  

(a) If  V ~ 0, m o v e m e n t  pa t te rns  lack o r t h o r h o m b i c  
symmet ry  but  are always bilaterally symmetr ic .  

(b) If  V = 0, m o v e m e n t  pa t te rns  are identical  to 
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Fig. 5. Movement patterns of the object symmetry axes (OSA) for general flow types. The central column shows 
subdivision of V-Wk-B space into domains with different types of movement patterns. Four levels (V = -0.75,  0.0, 0.75 

and 1.5) show the full range of possible patterns. Symbols in stereograms as in Fig. 4. Further explanation in text. 

those of Fig. 4. Isochoric plane strain flow is one of the 
possible regimes in this category. 

(c) If V < 0, as for constrictional flow, a drift of the 
OSA towards the X~ - X~ plane is superimposed on the 
plane strain patterns. If Wk > B, the OSA moves in 
spirals towards the X~ - X~ plane, except if it already 
lies in this plane in which case it rotates permanently in a 
closed orbit. The number of rotations needed to reach 

the X~ - X~ plane is a function of V. If Wk = B the OSA 
approaches a transient position parallel to X~ after one 
orbit (Fig. 5). If Wk < B, a sink-source pair is present in 
the X~ - X~ plane, separated by the same angle fl as for 
similar Wk and B values in isochoric plane strain flow: 
however, actual movement paths differ in both flow 
types. This also applies under certain conditions if V > 0 
(see below). 
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(d) If V > 0, as for flattening flow, the situation is 
much more  complex. If W k > B, all OSA except those in 
the X~ - X~ plane follow spiralling paths towards X~, 
which acts as a sink. If Wk = B, the same happens along 
more complex orbits, and a transient position exists 
along X~. If Wk < B, the extension parallel to X{ coun- 
teracts the drift of OSA towards a sink in the ~ - Xj 
plane. The actual pattern of stable positions depends on 
the ratio Wk-B-V. If 0 < V < 1 and 

B ' -  
--B2 < V 2 or sin fl < V, (16) 

objects will approach the sink in the X~ - X~ plane, but 
less rapidly than for plane strain and along a narrow 
corridor which follows a great circle between the sink 
and X{. If 

B 2 -  W~ 
B-------y---- > V 2 or sin fl > V, (17) 

the sink in the X~ - X~ plane is changed to a transient 
position and a sink is created along X I (Fig. 5). If  
equations (13) or (15) are satisfied, all OSA travel along 
paths from the source on the X~ - X~ plane towards a 
sink-plane through X~. Consequently,  a transient posi- 
tion along X~ and a sink in the X~ - X~ plane, as for 
isochoric plane strain flow, only exist if the B-Wk-V 
co-ordinates of the flow can be plotted below the 
ornamented  surface in the central column of Fig. 5. 

A X I A L L Y  N O N - S Y M M E T R I C  O B J E C T S  

The rotational behaviour of objects with general 
or thorhombic shape symmetry is incompletely under- 
stood since governing equations need numerical solu- 
tion. However ,  the theory of existing sink positions for 
certain W k values and object shapes does not break 
down for objects which lack axial symmetry.  For an 
object with a, b and c axes parallel to X1, X2 and X3 
(c > a > b), the rotational behaviour in isochoric plane 

strain can be derived as outlined above and in Freeman 
(1985); 

S {cos ~p cos ~0 (Wk + Bl cos 20) U) I ~ 

- sin ~p sin ~0 cos 0 (Wk + B1)}, 

S {cos ~p sin q~ cos 0 (B 2 - Wk) (O 2 = 

+ cos ~ sin W (Be cos 20 - Wk)}, (18) 

S {4 sin q~ sin 0 (W k + B3 cos 2qJ) (03 = ~  

+ B3 sin 2~p sin 20 cos @}, 

in which 

b: _ c 2 c 2 _ a 2 a 2 _ b: 
- B2 - B3 - b2 .  ( 1 9 )  B t be + c2, c2 + a2 ,  . a2 + 

From (18) the equations for 0, ~b and ~ of object axes in 
the external reference frame can be calculated. For 
axially non-symmetric objects, the angular velocity of 
the longest or shortest axis of the object is not only a 
function of its orientation in the flow, as for axially 
symmetric objects, but also of the orientation of the 
other two symmetry axes. For objects which deviate 
slightly from axial symmetry (e.g. with axial ratios of 
10"5:4),  two stable sink positions can be found in the 
X~ - X~ plane, depending upon whether the shortest or 
the intermediate axis is parallel to X~ (Fig. 6). The 
orientation of these sink positions can be found using an 
equation similar to (10): 

W k Mx 2 _ Mn z 
cos fl B* B * Mx 2 + Mn 2 , (20) 

where Mx and Mn are the object 's  long and short 
symmetry axes in the Xj - Xj plane. Two sources exist 
in this plane diametrically opposite the sinks from X~. 
Numerical solution of equation (18) for some object 
orientations shows that the object 's  longest axis migrates 
from any orientation in the flow towards the general area 
of the two sinks (Fig. 6), provided: 

W k < B 2. (21) 

/SOURSE ,SINK p~_SOURt-ES ~SINKS 

." / x , 
, o', ., b / 

;5 / >/ 
Co) --5 "0:' .J '" 

Fig. 6(a). Instantaneous displacement directions of the symmetry axis of axially symmetric prolate objects along a sphere 
for non-coaxial flow with Wk < B. One source-sink pair exists for this axis. Most movement  directions trace orbits towards 
the sink, some towards the transient stable position (solid circle). (b) Instantaneous movement  directions of the longest axis 
of a prolate object with orthorhombic symmetry along a sphere for W k < B 2. Two source-sink pairs exist for the long axis, 
active when either the shortest or the intermediate axis of the object lies parallel to X~. Instantaneous movement direction 
of the longest axis depends on the general orientation of the ellipsoid, indicated by the orientation of an ellipse in the 
diagram; most long axes trace orbits towards the sink pair and some towards the transient position (solid ellipse). Upper  

hemisphere Wulff projections. 
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Only the initial orientation of the short and intermediate 
symmetry axes determine the actual movement path 
towards the sinks. 

PRACTICAL APPLICATION 

Introduction 

Rigid objects suspended in any homogeneous viscous 
non-coaxial flow can be divided into two groups: those 
with permanently rotating symmetry axes and those 
which can reach a stable sink position in the X~ - X~ 
plane of the flow. Objects of the second group become 
immobilized with one symmetry axis parallel to X~ and 
two symmetry axes in the X~ - X~ plane, one of which is 
at the actual sink position. Such objects are totally 
immobile since to1, to2 and to3 are all zero [equations (8), 
(12), (18)]. Equation (20) describes the orientation of 
the symmetry axis at the sink position with respect to X; 
for immobilized objects of general orthorhombic shape 
as a function of B * and Wk only. Axially non-symmetric 
objects can have two sink positions of a symmetry axis in 
the X~ - X; plane (Fig. 6) but for each of them equation 
(20) applies. Although the actual path to reach a stable 
sink position in the X~ - X~ plane depends on Wk, V and 
Bi, the orientation and length-width ratio of the cross- 
section in the X~ - X~ plane of any immobilized object 
can be used to calculate B* and fl or some function of 
these values, and thus W k. This applies for any steady, 
homogeneous flow and additional information on the 
3-D shape and orientation of the object places further 
constraints on the nature of the flow. These principles 
are of great interest to geologists although practical 
applications are as yet wrought with difficulties. 

Application to rocks 

In a sample of deformed rocks it is difficult to deter- 
mine which objects had reached a stable position, and 
which were still rotating as deformation stopped. Rigid 
porphyroclasts in a ductilely deforming matrix often 
recrystallize along their margins and produce tails of fine 

recrystallized material which stretch out into the matrix. 
Immobile objects with a symmetry axis at a sink in the 
X~ - X~ plane of the flow can be expected to show 
straight o-type tails with 'stair-stepping' (Fig. 7) (Pass- 
chief & Simpson 1986). Permanently rotating objects 
tend to deform the developing tails in a more or less 
complex manner. EUipsoidal objects rotate by periodic 
accelerations and decelerations (Fig. 3) which also influ- 
ence recrystallization rates. Tail development will be 
significant during the period of slow rotation when the 
long axes of the object are near the X~ - X~ plane, and 
these tails will become distorted to 5-types during the 
subsequent fast rotation when the long axes are near the 
X~ - X~ plane (Fig. 7). In this way, each 180 ° rotation 
can produce its own set of tails and complex porphyro- 
clast-tail systems will develop (Fig. 7 and Passchier & 
Simpson 1986). 5-type tails can also develop around 
spherical rotating objects if recrystallization is slow. 
Thus, complex and 5-type clast-tail systems are con- 
sidered to be indicative of permanently rotating objects, 
while objects with straight o-type tails are probably at 
stable positions. 

Tails of recrystallized material will tend to rotate 
towards the extensional eigenvector 12 of L' throughout 
the deformation. For deformation histories in which/2 
does not rotate systematically through the material, 
recrystallized tails will reach parallelism with 12 at high 
finite strains. The angle r/ between the Mx-axis of an 
irrotational rigid object, which lies at a sink in the 
X~ - X~ plane, and/2 or the straight domain of the tail 
away from the object is a function of Wk and B * only: 

1 wk 
~1 = ~ s in  -1 ~ { v ' i -  - VC~k -- V B  ,2  _ W~k}" 

Figure 8(a) gives a plot of ~1 for the entire range of 
possible W k and B * values. 7/increases with decreasing 
B * up to the value B * = Wk, the 'cut-off point'. At  still 
lower B* values, the objects are rotating permanently. 
Wk can be derived from these graphs in two ways (Fig. 
8b): (a) from the value 

Bc*t = Wk, 

which separates the o-type immobilized part of the clast 

I fjI I.L 

I I 

i v 1 2 3 4 s 6 8 9 10 

Fig. 7. Schematic reconstruction of the development of complex tails of recrystallized material around a rigid ellipsoidal 
object in simple shear, based on shearbox experiments, o-type tails of recrystallized material, generated when the object's 
long axis lies near the flow plane (y = 1-2) are deformed to &type tails (y = 3-6), followed by generation of new tails of 

o-type (y = 7-10). Cross-sections normal to the vorticity vector. 
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Fig. 8(a). Curves for the orientation of stable sink positions of rigid 
objects in the X~ - X~ plane of flow for a range of Wk values, r/--angle 
between the long axis of an object cross-section and/2, marked by 
recrystallized tails at high finite strain. B *-----shape factor. If Wk > B * 
no stable sink positions exist. (b) Example of the expected geometries 
of rigid-obJect recrystallized tail systems in cross-section parallel to 
X~ - X~ at Wk = 0.5. At low B* values, objects rotate permanently 
and generate b-type and complex tails. At high B * values, to the right 
of the 'cutoff point', objects have their long axis at a stable sink 
position and generate o-type tails only. ~/decreases with increasing B *. 

population in a rock from the complex and 6-type rota- 
tional part, and (b) theoretically from ~/ and B* for 
individual objects if subparallellism of recrystallized 
tails with 12 during the last stages of the flow can be 
proven. 

As a first attempt to apply the theory to rocks, the 
following five requirements should at least be met. (1) 
The fabric and general setting of the samples should 
indicate that deformation was reasonably homogeneous 
on the scale of the sample and that systematic changes in 
the orientation of the kinematic frame of the flow are 
unlikely due to the regional setting. Samples from the 
limb of a major fold are unsuitable, but samples from a 
straight, regular shear zone may be useful. (2) Grain size 
in the matrix should be significantly smaller than the size 
of the objects in order to make reasonable the assump- 
tion of homogeneous flow. (3) High finite strains 
accumulated by homogeneous flow are required to 
rotate sufficient objects towards sink positions. (4) 
Object shape should be regular and closely approach 
orthorhombic shape symmetry. Deviations of object 
shape from an ellipsoid are not expected to influence the 
position of sinks (Bretherton 1962). (5) A sample should 

contain a large number of spatially well dispersed objects 
with variable B * values. 

Mylonite sample 

In mylonites produced by homogeneous non-coaxial 
flow leading to high finite strains, porphyroclasts with 
high B* values can be expected to reach stable sink- 
positions. Such clasts should be recognizable from their 
tail geometry and from a preferred orientation of one of 
the OSA parallel to the vorticity vector of the flow. 

A sample of quartzite mylonite from the St. Barth- 
elbmy Massif, French Pyrenees, has been used for an 
analysis of porphyroclast orientation. The sample was 
taken from a planar quartzite lens in a major shear zone. 
The surrounding mylonitic gneiss contains a planar 
mylonitic shape fabric formed under upper-greenschist 
facies conditions (Passchier 1985). The quartzite mylo- 
nite has a matrix of weakly elongate dynamically recrys- 
tallized quartz grains (20/~m average grain size) which 
define an oblique foliation. Numerous isolated por- 
phyroclasts of K-feldspar lie in the matrix with elongate 
straight recrystallized tails, defining a good stretching 
lineation and compositional layering at an angle of 28 ° to 
the quartz fabric. No boudinage or sheath-folding of the 
compositional layering was observed, and the quartz 
fabric does not change in character and orientation 
towards the recrystallized feldspar tails: this suggests 
that the tails approached passive-marker behaviour in 
the flow. All clast-tail systems show consistent stair-step- 
ping symmetry indicating non-coaxial flow (Fig. 9). Rfin 
the sample must exceed 500 judging by the length-width 
ratio of recrystallized feldspar tails (Fig. 9). The 
homogeneity of preferred orientation patterns of quartz 
(both crystallographic and shape) throughout the sample 
suggests that the flow which produced them was reasona- 
bly homogeneous on sample scale. The transparent 
nature of the quartzite allows observation of the com- 
plete 3-D geometry and orientation of porphyroclast- 
tail systems in I mm thick sections parallel to the stretch- 
ing lineation and normal to the foliations; i.e. in the 
inferred X~ - X~ plane of the flow (e.g. Simpson & 
Schmid 1983, Passchier & Simpson 1986). 

Most porphyroclasts in the sample are oblate. Prolate 
clasts usually have their long axes in the plane of the thin 
section. In cross-section parallel to this plane, complex 
(Fig. 9a), 6-type and apparently immobilized ty-type 
clasts (Fig. 9b) are all present. All porphyroclasts with 
approximately orthorhombic shape symmetry and two 
symmetry axes in the plane of the section were analysed 
as follows: B* values in the inferred X~ - X~ plane and 
~/, the angle between the long axis and the trace of the tail 
away from the clast, were measured and plotted (Fig. 
10). Because of the high inferred finite strain values, the 
tails are assumed to parallel 12, at least during the last 
stages of deformation. Objects smaller than 100 /~m 
were omitted from the analysis because flow cannot 
be expected to have been homogeneous on this scale. 
Nearly all complex and 6-type clast-tail systems (open 
circles) plot left of the B* = 0.6 line. A dense cluster 
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Fig. 9. Porphyroclasts of K-feldspar with fine-grained recrystallized tails in quartzite mylonite, St. Barth61emy Massif, 
France. Stair stepping of recrystallized tails with respect to reference plane (RP) from right to left indicates sinistral sense 
of shear. (a) Complex clast-tail system indicative of permanent rotation, B* = 0.38; (b) or-type clast-tail system 
(B* = 0.76) in which the clast is inclined in opposite direction to the stair stepping of tails, probably indicating that the 

object's long axis was near a stable sink position. 
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Fig. 10. Data plot of K-feldspar clast-tail systems in quartzite m y l o -  
n i t e ,  St. Barth61emy Massif, France, from thin sections normal to the 
inferred vorticity vector of the flow. Orientation of object long axes 
with respect to trace of recrystallized tails, in degrees, plotted against 
B *, as in Fig. 8. Open circles, clast-tail systems with complex or 6-type 
geometry indicative of permanent rotation; dots, a-type clast-tail 

systems. Further explanation in text. 

of o-type systems (dots), which dip in the opposite 
direction to the stair stepping, plot to the right of this 
line. The solid curves (Fig. 10) represent theoretical r/ 
values for Wk = 0.6 and 0.7 from Fig. 8. As would be 
expected for naturally deformed rocks with non-axially 
symmetric objects, there is no close fit of data points to a 
specific curve, but a cluster in the general region cer- 
tainly exists. Scattering can be due to: (a) fluctuations of 
non-axially symmetric objects in between their two sink- 
orientations; (b) changes in B*-values of objects with 
progressive deformation due to recrystallization without 
instant reorientation of the object; and (c) the probabil- x; 
ity that recrystallized tails did not act as perfectly passive x, 

markers. Figure 10 suggests that the flow which pro- X~ 
L' duced the fabric in this sample was not simple shear, but D' 

had a Wk number between 0.5 and 0.8, possibly 0.6. The w' 

general dominance of the long axes of prolate objects in R 
the inferred X~ - X~ plane seems to indicate that V ~< 1 d, 

di 
and that observations lie below the Vcrit c u r v e  in Fig. 5; ti 
i.e. flow was not of dominant flattening type. v 

The analysis given above is not meant to be presented s 
W 

as a perfectly reliable method of determining the vortic- wk 
ity number in a naturally deformed sample; it is a first 
attempt, using rigid-object orientation analysis. The /3 
way in which porphyroclasts can change shape during a, b, c 
progressive deformation and the effects of fluctuating Mx, Mn 
Wk should be investigated before the method can be 

Bi 
more generally applied. It should be clear from this B 
example that populations of rigid objects in ductilely 
deformed rocks store a significant amount of informa- B* 
tion, not only on sense of vorticity but also on the 0, ~, 
vorticity number and deviations from plane strain. 0, ~, 
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A P P E N D I X  

Nomenclature 

co-ordinates in external reference frame fixed to d~ 
co-ordinates in internal reference frame fixed to OSA 
displacement rate--external reference frame 
velocity gradients tensor--external reference frame 
symmetric strain rate tensor--external reference frame 
vorticity tensor---external reference frame 
rotation tensor [Goldstein 1980, eq values (4)-(46)] 
eigenvectors of D'--instantaneous stretching axes 
eigenvalues of D'--instantaneous stretching rates 
eigenvectors of L'--flow apophyses 
instantaneous displacement rate vector of OSA on a sphere 
instantaneous stretching factor for plane-strain 
vorticity 
vorticity number [equation (3)] 
kinematic vorticity number of Truesdell [equation (4)] 
angle between source and sink in X~ - X~ plane [equations 
(10) and (20)] 
length of semi axes rigid object along 3(1, X2, 3(3 
length of long and short semi axes of object in the X~ - X~ 
plane 
Bretherton's shape factors [equation (19)] 
Bretherton's shape factor for axially symmetric objects 
[equation (5)] 
ratio long/short axis object in X ~ - X j  cross-section 
[equation (20)] 
Eulerian angles 
rate of change of Eulerian angles 
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u J; angular velocities of object around Xi  
V volume change/plane strain deviation factor [equation (14)] 
OSA object symmetry  axes 

Compar ison  with other work  

Stable positions for ellipsoidal objects in non-coaxial flow have been 
predicted by previous workers (e.g. Jeffery 1922, Brether ton 1962, 
Freeman 1985) but  the subject has been studied in most  detail by 
Ghosh  & Ramberg  (1976). They restricted their analysis to a two- 
dimensional  situation, however,  and used the addition of pure shear 
and simple shear  (with stretching rates k and ~, respectively) to obtain 
a general non-coaxial tensor  of displacement rate. Unfor tunate ly  this 
method  gives a presentat ion of L'  which unnecessarily complicates the 
mathematical  f ramework for comparison of flow types with different 
vorticity numbers:  the extensional eigenvector l 2 is fixed to one axis of 
the external reference frame. Freeman (1985) also uses this presenta- 
tion of L' .  Ghosh  & Ramberg  have used r = a/b  instead of B and a 
deviant vorticity number :  

i 
S, = - ( A I )  

to der ive the f o l l ow ing  equat ion  fo r  angular  ve loc i t y  o f  a two-d imen-  
sional e l l ipt ical  ob jec t  in non-coax ia l  f low: 

(?.2 COS 2 ~ + Sr  (?.2 __ l )  sin 2 Z + sin2 Z) 
,o = ( A 2 )  

v2+ 1 

where Z describes the orientation of the a axis of  the object in the 
X~ - X~ plane. The components  of L' and S ,  as used by Ghosh  & 
Ramberg  (1976), can be rewritten: 

x/1 - w~ 
S~ - - - :  i = S ~ / 1  - W~; ~ = WkS,  (A3) 

2 W k 2 

if 0, S/2 and - S / 2  are elgenvalues of D'  as used in this paper. In this 
case, for isochoric plane strain flow Wk = W. Rewriting r in terms of 
B, equat ion (A3) becomes: 

WkS SB  
~u = ( B +  1) cos 2 X + - X / I  - W~ sin 2Z 

2 2 

(l - B) WkS 
+ sin- Z. (A4) 

This equation can be simplified by choosing an external reference 
frame fixed at 45 ° to di, the instantaneous stretching axes of the flow: 

t~ 
'; . . . . . . . . .  7. (A5) 

2 

where a/2 is half the angle between 12 and 13 (Bobyarchick 1986, 
Passehier 1986), related to S and W k (Fig. l) by: 

cos(z = Wk: ~in, ,  = V'I - W~-[ (A6) 

Equat ion (A4) now becomes 

(,2 ...... ( W  k + B cos 2q,) (A7) 
2 

which is equivalent to equation (8) if ~p = 90 °. In this orientation and 
for plane strain, the length of the object along the X 2 axis does not  
influence the equation and this leads to the equivalence with Ghosh  & 
Ramberg ' s  (1976) results for two dimensions or elliptic cylinders with 
their long axis parallel to the vorticity vector. 

The equation relating the critical axial ratio of an object, below 
which it is permanent ly  rotating, and the vorticity number  is given by 
Ghosh  & Ramberg  (1976. p 7) as: 

! ~ + S~ 

Using B * and W k instead of r and 5, this reduces to equation (23): 

B~,, W k (A8) 

The use of a reference frame fixed to ¢ (as in this paper) eliminates 
the need to describe the orientations Zt and X: of min imum and 
maximum velocity of the object as in Ghosh & Ramberg (1976, pp. 
10-11 ), because they are always parallel to X~ and X~. In the reference 
frame for L' used in this paper, source and sink are symmetrically 
arranged at an angle +-3/2 from X~, where fl is given by equation (10). 
In Ghosh  & Ramberg  (1976), both orientations Xs and Z6 suffer an 
additional rigid body rotation over ct/2 because of a choice of reference 
frame fixed to l: and: 

i ~ (t 
Z~ = - - ~ 90" v , 

2 2 
(A9) 

Z~, -: - + 9(I~ + ' 


